SOLUTION: Calculus Algebra Worksheet – Studypool
SOLUTION: Calculus Algebra Worksheet – Studypool.

View attached explanation and answer. Let me know if you have any questions.
Derivatives
1. Find derivatives:
a. y = ( x + 7 ) ( x − 9 )
3
4
Differentiating both sided with respect to x and using product rule on RHS
dy d
3
4
=
x + 7) ( x − 9)
(
dx dx
3 d
4
4 d
3
= ( x + 7)
( x − 9) + ( x − 9) ( x + 7)
dx
dx
= 4 ( x + 7 ) ( x − 9) + 3( x − 9) ( x + 7 )
3
3
4
2
= ( x + 7 ) ( x − 9 ) 4 ( x + 7 ) + 3 ( x − 9 )
2
3
= ( x + 7 ) ( x − 9 ) ( 7 x + 1)
2
b. y =
3
x2 − 5
x −5
Differentiating both sided with respect to x and then using quotient rule on RHS
dy d x 2 − 5
=
dx dx x − 5
=
=
=
( x − 5) ( 2 x ) − ( x 2 − 5 ) (1)
( x − 5)
2
(2 x 2 − 10 x) − ( x 2 − 5 )
( x − 5)
x 2 − 10 x + 5
( x − 5)
2
2
c.
y = ( x3 + 4 ) 4 x 2 + 2 x − 5
Differentiating using product rule
dy d 3
=
x + 4) 4×2 + 2x − 5
(
dx dx
= 3x 2 4 x 2 + 2 x − 5 + ( x3 + 4 )
=
=
=
d. y =
3
8x + 2
2 4 x2 + 2 x − 5
6 x 2 ( 4 x 2 + 2 x − 5 ) + 8 x 4 + 2 x 3 + 32 x + 8
2 4 x2 + 2 x − 5
32 x 4 + 14 x3 − 30 x 2 + 32 x + 8
2 4 x2 + 2 x − 5
16 x 4 + 7 x3 − 15 x 2 + 16 x + 4
4 x2 + 2 x − 5
2 x2 + 5
( x + 3)
4
Differentiating both sides with respect to x
1
2
3
2
x
+
5
)
dy d (
=
4
dx dx ( x + 3)
−2
1
4 1
3
2
3 4x − 2×2 + 5 3 4 x + 3
x
+
3
2
x
+
5
(
) (
( ) (
(
)
)
)
3
=
8
( x + 3)
4 x ( x + 3)
=
3( 2 x 2 + 5)
4
23
− 4 ( x + 3) ( 2 x 2 + 5 )
3
( x + 3)
8
4 x ( x + 3) − 12 ( 2 x 2 + 5 )
( x + 3)
23
2
3
2
x
+
5
(
)
3
=
=
=
13
( x + 3)
8
4 ( −5 x 2 + 3 x − 15 )
3 ( x + 3) ( 2 x 2 + 5 ) 2 3
5
−4 ( 5 x 2 − 3 x + 15 )
3 ( x + 3) ( 2 x 2 + 5 ) 2 3
5
2. 5 x3 y 4 +
3y2
= 5 xy
4 x3
d 3 4 3y2
d
5 x y + 3 = 5 ( xy …
15 Million Students Helped!
Sign up to view the full answer